Dissecting HIV cell-to-cell infection with flow cytometry

Metroflow October 18, 2016

Benjamin Chen

Mount Sinai School of Medicine Dept. of Medicine, ID Division Immunology Institute New York, NY 10029

Global HIV 2014

Adults and children estimated to be living with HIV | 2014

Total: 36.9 million [34.3 million - 41.4 million]

Natural history of HIV infection

Mechanisms of HIV spread

Piguet, et al. JCI 2004

T cell virological synapse: CD4, Env and Gag colocalized at contact sites

Gag

Nomarski

HIV-I Gag-iGFP

GFP <u>internal interdomain insertion into</u> core structural protein Gag Maintains full genome & viral proteins

Internal fluorescently labeled Gag

Fig. 1. Genomic organization of HIV-1 highlighting the location of the four major Gag subunits, p17 MA, p24 CA, p7 NC p2 d p6p1 Two sparses regions, p2 which separates CA from NC, and p1, which separates p17 MA on p6, arc XISO indicated. Beads Bri a String representation (right so showing with individual comains connected by linker regions that are cleaved by protease. Black loop at the top represents a myristoylate moiety that is added to Gag co-translationally.

Infectious fluorescent virus particles

Cell-free Virus particles

Cell-associated virus particles

Cell-to-cell HIV transfer

Donor Target Discrimination

A Gag-iGFP infected + no inhibitor

Efficiency of cell-free vs cell-associated viral uptake

Chen P et al., J Virol 2007

Gag synaptic button

GAG CMRA

R

Jurkat HIV Gag-iGFP & CD4+ (CMRA)

VS-mediated viral transfer requires HIV Env

Virological Synapse formation

[][]:[][] (min:sec)

Live tracking of HIV-infected cell conjugates over 4h

190min

210 240 30 60 150 90 120 180 $\mathbf{0}$ time (min)

110 Jurkat HIV Gag-iGFP

22% form conjugates

83% Gag accumulates at synapse

Gag-iGFP recruitment to the VS and transfer Jurkat HIV Gag-iGFP

CD4+T cells

Gag-iGFP recruitment to the VS and transfer

02:35 min:sec

Hubner et al Science 2009

VS transfer leads to productive infection

Gag-iGFP

MT4

+ GFP in place of nef

Stepwise model for VS formation and viral transfer

Signaling in donor cell coordinates assembly: Signaling in target cell triggers endocytosis

VS Neutralization Resistance

Infectious GFP-expressing HIV

NL-GI (for infectivity assay)

Cell-to-cell HIV infection

Donor Target Discrimination

A NL-GI infected + no inhibitor

Resistance of VS infection to neutralizing antibodies

Durham et a J Virol 2012

Primary isolate transmitted founder HIV Env clones

Env clone name	Origin	Tier	Subtype	Fiebig
SVPB5	Washington DC	1B	В	V
SVPB6	Trinidad	2	В	V
PVO, clone 4	Italy	3	В	III
WITO 4160	Alabama	2	В	II
REJO 4541	Alabama	2	В	П
RHPA 4259	Tennessee	2	В	<v< td=""></v<>
SVPB 8	Trinidad	2	В	IV

Clade B primary isolates cell-free vs cell-tocell neutralization by HIVIG

Li et al, unpublished

Neutralization of T/F HIV SVPB6

% Inhibition

Neutralization of T/F HIV RHPA

% Inhibition

log 10 Ab concentration (ug/ml)

Fold Increase in IC50 in cell-to-cell infection over cell-free infection

Incomplete neutralization of T/F Env by potent bnAb

Neutralization of TF Env viruses engaged in VS

- TF Env -- more difficult to neutralize than lab strains -- especially by cell-cell infection
- Increases in IC50 and decreases in Max neutralizing activity are observed
- Low background of the flow based assay is critical for accurately assessing the maximum neutralizing capacity

Does cell-to-cell infection occur during infection in vivo?

Multicopy HIV infection during cell-cell infection

Sigal et al. Nature 2011 Agosto et al. PPath 2014

Multicopy HIV infection during cell-cell infection

Del Portillo et al. J Virol 2011 Sigal et al. Nature 2011 Agosto et al. PPath 2014

VS promote the co-transmission of multiple HIV-1 copies

Green

Experimental design to detect multi copy infection in vivo

Cell-associated inocula

Experimental design to detect multi copy infection in vivo

Cell-associated inocula

Analyze 3 days post infection

Cell-free inocula

Inject Intravenously

Analyze 3 days post infection

Robust acute infection in humanized mice, with fluorescent HIV using T/F Env

Cell-cell infection

Days

Examining multicopy infection in vivo mediated by cell-associated virus

Donors

Experimental design to detect multiply infected cells

Cell-associated inocula

Cell-free inocula

Cell Free

Cell-to-cell HIV-1 transmission promotes multicopy infection in vivo

Wodarz D. & Komorova, N UC Irvine

Intravital imaging: Imaging HIV-1 infected cells

Law, K Submitted

Timelapse imaging show limited mixing of HIV variants in the the spleen

HIV-GFP HIV-mCherry Donor Cells Autofluorescence

Law, K Submitted

Tracking movement of uninfected target cells

HIV-mCherry CD4 Target Cells

SHM

Autofluorescence

Target cells slow down in the vicinity of HIV infected cells

Elongated infected cells form long-lived contacts with target CD4+ T cells

HIV-mCherry CD4 Target Cells SHM Autofluorescence

Law, K Submitted

Putative polarized HIV Gag-iGFP button in live humanized mouse in vivo

M4 Gag-iGFP RHPA 48 hpi

Evidence for cell-cell HIV infection in vivo

- Flow based inheritance assay shows infection of humanized mice with cell-associated HIV transmits multiple HIV copies
- At low infected cell density, genetic clustering is apparent--suggesting spread is local
- Genetic compartmentalization--tethered cells, diminished displacement of infected cells
- Target cells cluster around infected cells.

Cell cell spread and HIV pathogenesis

- Acute HIV spread in huMice maintains multicopy infection—Quasispecies
- Cell-cell interactions spread HIV
- Cell-cell spread promotes escape from antibodies —vaccines should target infected cells

Icahn School of Medicine at Mount Sinai

Natasha Durham Hongru Li Lum Zony Maria Ines Barria Ray Alvarez **Ping Chen** Wolfgang Hübner Armando Delportillo **Mount Sinai Imaging Collaborators** Ronald Gordon

Heather Bell Rumana Huq

Acknowledgments

Kenneth Law Alice Yewdall

Rebecca Lee

Olga Herrera

ISMMS Flow Core

Jordi Ochando

Chris Bare

UC Irvine Dominik Wodarz Natalia Komorova

NY Structural Biology Center

Bill Rice Edward Eng

•NIH, NIAID, NIGMS, NIDA Avant Garde DP1

- Burroughs Wellcome Fund
- amfAR, The Foundation for AIDS Research

• Irma T Hirschl and Monique Weill-Caulier Trusts